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The passage of powerful laser radiation in a flat layer of diathermal medium with 
specularly reflecting and diffusely emitting boundaries is studied. The condi- 
tions under which "optical turbulence" arises are examined. It is shown that the 
optical characteristics of the boundaries of the flat layer are bifurcational 
parameters. 

The development of laser technology has stimulated the investigation of different non- 
linear optical phenomena arising in media through which laser radiation passes. In most works 
on nonlinear optics, however, the effect of the boundary surfaces of the optical media on the 
manifestation of various effects associated with the transfer of the laser radiation is not 
adequately taken into account. 

In this paper it is shown that when powerful laser radiation passes through optical 
media the properties of the boundary surfaces can significantly affect the intensity of the 
light flux and in some cases they can result in the appearance of "optical turbulence" [I]. 

i. We shall study the passage of laser radiation through a flat layer of a diathermal 
medium with opaque diffusely emitting and specularly reflecting boundaries (Fig. i). Then the 
nonstationary radiation transfer problem can be written in the following form: 

where  ( x ,  t )  e II = [0,  s 

c Ot + Ox = 0 ,  c Ot Ox = 0 ,  

• [o,  +| > 0, with the boundary conditions 

(i) 

Jo ~ = 8~ ~ d d o  (%, T) + G,#a,G=l,~>o 
(2) 

and initial conditions 

Ja,x(x, O)==Jp(x), Jz~(x, 0)-~-0, O G x ~ I .  (3) 

This formulation of the problem is valid in the case of the passage of comparatively 
weak radiation fluxes in an optical medium. If, however, the passage of powerful monochrom- 
atic radiation in a medium with specularly reflecting and diffusely emitting boundaries is 
studied, then the boundary conditions can become substantially nonlinear, since the optical 
properties of the boundaries will depend on the intensity of the radiation incident on the 
surface. Then, for the transfer of powerful laser radiation in a diathermal medium, the 
boundary condition (2) can be generalized as follows: 

82, ~ n~Jo (~,, T) + [~ (J1 ~)]~=z,~>o 
(2') 
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Fig. i. Transfer of radiation in a flat 
diathermal medium. 
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The geometric scheme of reduction to a difference equation. 

Form of the reflection function at the boundary of the region. 

or 

Jl,~ = qS!.~,, (J2,~) at x :-= 0, 

J2,~==42,~t=(Jl,x) at x =-: 1 

i f  E1,)v, ~2,t,  nt and T are constants.  Here, evidently 

t t ~ -  niJo (%, T], i =- I, 9 

(2") 

We denote t' = ct and, without loss of generality, we set ~ = i.* Then the solution of 
the problem (i), (2"), and (3) can be represented in the form 

.r ~(x, t ~) - Y~(t~+ ( - - 1 ) ; x ) ,  i =  1, '2, 

where Yl(t') is the solution of the difference equation 

Yx(t'+2) =r F6 I--l, oo), (4) 

with the initial condition 

de, {d~ (-- t'), t' ~ [-- 1, 0), 
Yx(t')l[_~,l) =: h(t') = 0, t ' 6 [0 ,  1); (5) 

here ~(.) = #i,~io~2,~2 is the superposition of the corresponding functions. 

*From the presentation given below it will be easy to see how the corresponding results change 
for arbitrary s > 0. 
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Fig. 4. Initial distribution of the incident radiation. 

Fig. 5. Form of the limiting distribution of the radiation. 

Thus the starting problem has been reduced to a difference equation (4) with continuous 
time and the initial condition (5). The method of reduction, whence, in particular, the re- 
lation (5) follows, is studied in detail in [2]. In [2] the conditions which the functions 
#(.) and h must satisfy are indicated and a theorem on the asymptotic behavior (in the limit 
t § ~) of the solutions of the problem (i), (2"), and (3) is formulated. 

Here we note that the behavior of the solutions depends on the topological properties of 
the mapping ~(.), in particular, on the structure of the set of stationary points of #(.), 
i.e., points $ ~ R i such that $ = ~(.)($), or some iterations 

which are called cycles of period n. 

Thus, according to [2], piecewise-smooth asymptotically periodic solutions with finite, 
infinite, and even uncountable (of the type "Cantor comb") set of points of discontinuities in 
a period are typical for Eq. (4) (and therefore for the starting problem). For example, the 
solution can approch in the limit �9 § ~ a period-2 function of T' (or period-2/c function 
of the variable t). 

2. We shall study the specific example when the boundary conditions have the form (2'). 
following the method of characteristics (Fig. 2), we write the chain of relations 

Jl.~ (1, t' -}- 2) = Jl.~ (0, t ' @ I) = -  

+ h (J~,~ (o, t '  + t)) - 

T)+ A (z~,~(1, r)). 

We set in the last equality 

where  

def 
f i = I d ,  ~2=[ , where  Id  i s  t h e  i d e n t i t y  mapping.  

]~, ~(1, t ' + 2 ) = f ( / 1 ,  ~(1, t ' ))+tL, t'~>0, 

1 

Then 

(6) 
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Next, let sl,i = ~2,% = ss Then 

s~. n~Jo (~, T). I X : = -  
(7) 

It is known [2] that the behavior of the solutions of the difference equation (6) is deter- 
mined by the behavior of the trajectories of the one-dimensional dynamical system generated 
by the mapping 

~:Ji,~-+~(J1,~) +~. 

For definiteness, we shall examine the simplest example of a one-dimensional mapping ~: 
def 

u+ (i/2)u ~ + p, where u = 71.~. For any --4 ~ ~ 5 0.5 the mapping ~ has an invariant interval 
J~ and the solutions generated by the initial functions h = {Jp, 0}, whose values belong 
to the interval J~, remain in J~ for all t' ~ 0. Depending on the values of the parameter 

the solutions of this problem la) can be asymptotically stationary and 2a) they can ap- 
proach asymptotically piecewise-eonstant functions, which are periodic as a function of t' 
(for each fixed x e (0, i)) and whose frequency of oscillation either remains constant in 
time or increases without bound in a power-law fashion. 

In the case la) we have a solution of the relaxational type; in the case 2a) the solution 
is of a preturbulent type. In the first case the set of points of discontinuities of the 
limit function (points at which the derivative approaches infinity) is finite, while in the 
second case it is countable. 

There also exists a set of parameters D ~ R I for which the set of points of discontinu- 
ities of the limiting solution is uncountable (it is homeomorphic to Cantor's set [2]). The 
number of oscillations of the solution in any time interval (to, to + 2) increases exponenti- 
ally as to § ~. Such solutions are called solutions of the turbulent type (in the case at 
hand "optical turbulence"). 

Returning to the specific form of the parameter p, determined by the relation (7), we can 
say that each parameter n%, ~, and T = const is a bifurcational parameter in the above-in- 
dicated sense of the change in the qualitative behavior of the solutions. These same param- 
eters are also bifurcational in the standard sense. For example, there exists a countable 
set of parameters nl,j, j = 0,----/at which the period and the frequency of oscillations of the 
function Jl,% (or J2,1) change. It is obvious that this is also true for the other param- 
eters of the problem. 

In typical situations the bifurcations of the solutions are accompanied by a change in 
periods in accordance with Sharkovskii's universal order [2]: 

IA2A4A.,.A5.2A3.2A...A5A3, 

The first chain of "inequalities" means that the solutions have period-doubling bifurcations 
well known from hydrodynamics [3]. Finally, the period doubling is characterized by a uni- 
versal rate 5 = 4.669... and by a universal ratio of the amplitudes of the oscillations of 
the spectral intensity of the radiation ~ = 2.502 [4]. 

For the problem at hand, other "phenomena," which in the last few years have been intens- 
ively studied in many works [4, 5], are also possible. 

In conclusion we shall present a graph of the simplest limiting distribution of the radiati( 
component Jl,%, when the initial pulse Jp has one oscillation and the mapping ~(.) is monotonic 
(Figs. 3-5). 

NOTATION 

Here Ji,% and J2,% are the spectral intensities of the radiation; Jp is the intensity 
of the incident radiation; J0(%, T) is Planck's function; c is the velocity of light; % is the 
wavelength; El, % and ~2,% are the spectral emissivities of the boundary surfaces; n% is the 
spectral index of refraction; and, RI, % and R2, % are the spectral reflection coefficients of 
the boundaries. 
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